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Asymmetric catalysis of carbonyl transformations using amines Table 1. Catalyst Screening for the Reductive Michael Cyclization

or ammonium salts as catalysts has recently gained considerable 0 H H

attention! While enamine catalysis has been used mostly in the N/ Et0,C.__X.__CO,Et

context of carbonybi-substitution reactionsjminium catalysis is R )-\“R3 |

typically employed in conjugate and cycloadditions of edalbe 0 H R? H COPh

two strategies are closely related, and the same catalysts can often - COPh 20 m:;() 4 (11 eq)

be utilized in both approaches. In fact, enamine catalysis generally EI; ° . 1CHO

proceeds via iminium ion formation, while iminium catalysis often 10 CHO Dioxane, rt )

L - - . 1M(dr >15: 1)

leads to an enamine intermediate. Combining the two catalysis

principles in tandem sequences using a single catalyst is obviously time  vyield ee

attractive but has rarely been realized. Here we disclose an efficient catalyst RL R? R? X ] W [%]

asymmetric in situ iminium catalytic conjugate reduction followed g5 H t-Bu H CRCO, 2 82 093

by an enamine catalytic intramolecular Michael reaction. Our 9b H t-Bu H CI 12 90 95

process gives five- and six-membered carbacycles in excellent yields 9¢  H 2,6-PhPh  H  Cl 12 75 16

and enantioselectivities. gg g_rénOBn ::gﬂ n g: g gg gg
We have previously developed an organocatalytic, metal-free ot  ptBuoBn t-Bu H 6 90 95

asymmetric transfer hydrogenation@f3-unsaturated aldehydés. 9g Bn Me Me CI 24 <10

In this reaction, an enall} is activated with a MacMillan

imidazolidinium salt 2) via iminium ion formation 8). A subse- catalytic reductive aldol reactions have been describéue

quent hydride transfer to intermediaefrom Hantzsch este4a corresponding reductive Michael reactions are unkndwn.

presumably gives enamine intermedi&tdn situ hydrolysis then We have developed an imidazolidinone-catalyzed Michael cy-

provides saturated aldehyde usually in high yields and enanti-  ¢jization of formyl enones to give useful cyclic keto aldehydes in
oselectivities (eq 1). We reasoned that the reductively generatedhigh yields and enantiomeric exces&éSince these reactions are
enamine intermediatg, in addition to hydrolysis, should also be  catalyzed with the same type of catalyst that is used in our
able to react in situ with various electrophiles £XY) to give an organocatalytic conjugate reduction, we expected the two reactions
a-modified aldehyde7. To the best of our knowledge, such a to work well in an in situ tandem sequence. Indeed, when we treated
combination of iminium and enamine Catalysis has not been realizedena| enonel0 with Hantzsch este4 in the presence of different
before. imidazolidinone salts9), clean reductive Michael cyclization to
keto aldehydell was observed (Table 1). Independent of the
HH catalyst, the reaction furnished thati-product highly diastereo-
EtO,C COAEt selectively. Moreover, excellent yield and enantioselectivity was
obtained when we used commercially available imidazolidinone
catalyst9d. Catalyst9g, which we have previously used in the
)lj\ ho EO.C CO £t intermolecular Michael reacti_on, proved ineffective.
2 2 2 We have also screened different Hantzsch esters as hydrogen
\[ donors and found commercially available Hantzsch ektergive
x- () the best results (see Supporting Information).
After identifying suitable reaction conditions for the reductive
Michael cyclization of substraté0, we set up a study toward
exploring the scope of the process. The results are shown in Table
2. The Michael acceptor portion tolerates both aromatic and aliphatic
Jj\ enones giving the products in comparable yields and stereoselec-
tivities (entries 6). Substituents at the aromatic portion are well
tolerated (entries 5 and 6). We have also investigated an alkylidene
R R malonate Michael accepto2?) and obtained reasonably good
7 results when we used catalydxt.
Diastereoselectivities are generally high, and products resulting
The tandem sequence would be related to previously developedfrom the conjugate reduction of the enone were not observed. Our
metal-mediated reductive enolate generatietectrophile trapping tandem reaction constitutes a nonasymmetric conjugate reduction
processe8.For example, catalytic inter- and intramolecular reduc- followed by an asymmetric Michael cyclization. The alternative
tive aldol and Michael reactions of unsaturated carbonyl compounds sequence consisting of an asymmetric conjugate reductiof$ #f a
via metal enolates have been developedlhile asymmetric disubstituted enal followed by its diastereoselective Michael cy-
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Table 2. Organocatalytic Reductive Michael Cyclization With the proof of concept being made, a variety of different
oL 7 H A single flask, tandem enamiréminium catalysis sequences seem
N EtO,C CO,Et . . . .
j | possible and will be investigated.
Bn™ “N7 T#Bu COR . )
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